A Fine-Grained Classification of Subquadratic Patterns for Subgraph Listing and Friends

Karl Bringmann and Egor Gorbachev

Saarland University and Max Planck Institute for Informatics

STOC 2025 June 27th, 2025, Prague

Example

Example

Example

- Induced
- Non-induced

- Induced
- Non-induced

- Colored
- Not colored

- Induced
- Non-induced

- Colored
- Not colored

- Decision
- Counting
- Minimum-weight
- Enumeration
- Listing

- Induced
- Non-induced

- Colored
- Not colored

- Decision
- Counting
- Minimum-weight
- Enumeration
- Listing

Problem Definition

Definition (Min-Weight H-Subgraph Isomorphism Problem)

Fix pattern H. Min-weight (colored) H-subgraph isomorphism problem:

- *Input*: Edge-weighted host graph *G*.
- lacksquare Output: Edge-subgraph of G isomorphic to H with sum of edge weights minimized.

Problem Definition

Definition (Min-Weight H-Subgraph Isomorphism Problem)

Fix pattern H. Min-weight (colored) H-subgraph isomorphism problem:

- *Input*: Edge-weighted host graph *G*.
- lacksquare Output: Edge-subgraph of G isomorphic to H with sum of edge weights minimized.

Goal

■ Want to study the problem through the fine-grained complexity lens.

Goal

Notation: m = number of edges in G

- Want to study the problem through the fine-grained complexity lens.
- [Marx10]: $m^{\mathcal{O}(\operatorname{tw}(H))}$ algorithms vs $m^{\Omega(\operatorname{tw}(H)/\log\operatorname{tw}(H))}$ lower bounds gap in general.

Goal

Notation: m = number of edges in G

- Want to study the problem through the fine-grained complexity lens.
- [Marx10]: $m^{\mathcal{O}(\operatorname{tw}(H))}$ algorithms vs $m^{\Omega(\operatorname{tw}(H)/\log\operatorname{tw}(H))}$ lower bounds gap in general.
 - $\,\hookrightarrow\,$ Our goal: characterize patterns of low time complexity.

Trees

Folklore: $\mathcal{O}(m)$

Folklore: $\Omega(m)$

Trees

Folklore: $\mathcal{O}(m)$

Folklore: $\Omega(m)$

$$\frac{\mathsf{Cycles}\left(C_{\ell}\right)}{\mathsf{[AYZ97]:}\ \mathcal{O}(m^{2-1/\lceil\ell/2\rceil})}$$

Everything Else

[this work]: $\Omega(m^{2-o(1)})$

[JR15]: $\Omega(m^{2-o(1)})$

Everything Else

[this work]: $\Omega(m^{2-o(1)})$

[JR15]: $\Omega(m^{2-o(1)})$

Parallel Path Graph

Definition (Parallel Path Graph)

A Parallel Path Graph $P(\ell_1, \ell_2, \dots, \ell_k)$ consists of two specified vertices connected by k internally disjoint paths of lengths $\ell_1, \ell_2, \dots, \ell_k$.

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha, \beta, \underbrace{2, 2, \ldots, 2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2, \ \gamma \geq 0 \text{ (denote by } P(\alpha, \beta, \gamma \times 2)).$

Definition (Subquadratic Building Blocks)

[JR15_]

- A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Subquadratic Building Blocks)

[JR15]

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Building Blocks of Subquadratic Patterns

Definition (Subquadratic Building Blocks)

[JR15]

Let \mathcal{P} be the family of patterns consisting of:

- \blacksquare A single edge (P(1));
- \blacksquare A triangle (P(2,1));
- $P(\alpha,\beta,\underbrace{2,2,\ldots,2}_{\gamma \text{ times}}) \text{ for all } \alpha \geq \beta \geq 2 \text{, } \gamma \geq 0 \text{ (denote by } P(\alpha,\beta,\gamma\times2)).$

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Definition (Family of Truly Subquadratic Patterns)

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

 $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound.

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

 $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound.

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

 $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound.

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

 $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound.

Theorem (Subquadratic Classification)

 $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound.

 $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound.

Main Result: Quantitative Version

Main Technical Theorem

Min-weight $P(\alpha,\beta,\gamma\times 2)$ -subgraph isomorphism is solvable in time $O(m^{2-1/f(\alpha,\beta,\gamma)})$ and not solvable in time $O(m^{2-1/f(\alpha,\beta,\gamma)-\varepsilon})$ for any $\varepsilon>0$ under fine-grained complexity assumptions, where

Main Result: Quantitative Version

Main Technical Theorem

Min-weight $P(\alpha,\beta,\gamma\times 2)$ -subgraph isomorphism is solvable in time $O(m^{2-1/f(\alpha,\beta,\gamma)})$ and not solvable in time $O(m^{2-1/f(\alpha,\beta,\gamma)-\varepsilon})$ for any $\varepsilon>0$ under fine-grained complexity assumptions, where

$$f(\alpha,\beta,\gamma) = \begin{cases} 2\beta\gamma + \frac{\alpha\beta}{2} - \frac{\beta^2}{2} + \frac{\beta}{2} - \frac{\alpha}{2} - 2\gamma + 2, & \text{if } \alpha + \beta \text{ is even, } \alpha > \beta \text{, and } \beta < \gamma + 2; \\ 2\beta\gamma + \frac{\alpha\beta}{2} - \frac{\beta^2}{2} + \frac{3\beta}{2} - \frac{\alpha}{2} - 3\gamma, & \text{if } \alpha + \beta \text{ is even, } 3\beta < \alpha + 6\gamma + 8, \text{ and } (\alpha = \beta \text{ or } \beta \geq \gamma + 2); \\ 2\beta\gamma + \frac{\alpha\beta}{2} - \frac{\beta^2}{2} + 3\beta - \alpha - 6\gamma - 4, & \text{if } \alpha + \beta \text{ is even, } 2\beta \leq \alpha + 4\gamma + 6, \text{ and } 3\beta \geq \alpha + 6\gamma + 8; \\ 2\beta\gamma + \frac{\alpha\beta}{2} - \frac{\beta^2}{2} + \beta - \frac{\alpha}{2} - 2\gamma + \frac{3}{2}, & \text{if } \alpha + \beta \text{ is odd and } \beta < 2\gamma + 3; \\ 2\beta\gamma + \frac{\alpha\beta}{2} - \frac{\beta^2}{2} + 2\beta - \frac{\alpha}{2} - 4\gamma - \frac{3}{2}, & \text{if } \alpha + \beta \text{ is odd, } 2\beta \leq \alpha + 4\gamma + 6, \text{ and } \beta \geq 2\gamma + 3; \\ 2\gamma^2 + \alpha\gamma + \frac{\alpha\beta}{8} + \frac{\alpha}{2}, & \text{if } \alpha = 0 \text{ mod } 4 \text{ and } 2\beta > \alpha + 4\gamma + 6; \\ 2\gamma^2 + \alpha\gamma + \frac{\alpha\beta}{8} + \frac{\alpha}{2} + \frac{3}{8}, & \text{if } \alpha \text{ is odd and } 2\beta > \alpha + 4\gamma + 6; \\ 2\gamma^2 + \alpha\gamma + \frac{\alpha\beta}{8} + \frac{\alpha}{2} + \frac{1}{2}, & \text{if } \alpha = 2 \text{ mod } 4 \text{ and } 2\beta > \alpha + 4\gamma + 6. \end{cases}$$

State of the Art

Everything Else

[this work]: $\Omega(m^{2-o(1)})$

[JR15]: $\Omega(m^{2-o(1)})$

Exponent Examples

Exponent Examples

Exponent Examples

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

Open Problems:

■ Extend the result beyond exponent 2.

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

- Extend the result beyond exponent 2.
 - \hookrightarrow Non-matching example already at $m^{2+1/6}$.

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

- Extend the result beyond exponent 2.
 - \hookrightarrow Non-matching example already at $m^{2+1/6}$.
- Time complexity in terms of n.

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

- Extend the result beyond exponent 2.
 - \hookrightarrow Non-matching example already at $m^{2+1/6}$.
- Time complexity in terms of n.
- When does fast matrix multiplication actually give a speedup for counting and decision variants?

Main Theorem

There is an explicitly defined set of patterns \mathcal{P}^+ such that:

If $H \notin \mathcal{P}^+ \Rightarrow \Omega(m^{2-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

If $H \in \mathcal{P}^+ \Rightarrow \mathcal{O}(m^{2-\delta(H)})$ -time algorithm and $\Omega(m^{2-\delta(H)-o(1)})$ conditional lower bound for min-weight colored H-subgraph isomorphism.

Open Problems:

- Extend the result beyond exponent 2.
 - \hookrightarrow Non-matching example already at $m^{2+1/6}$.
- Time complexity in terms of n.
- When does fast matrix multiplication actually give a speedup for counting and decision variants?

Long talk recording

Thank you!