Bounded Edit Distance

Optimal Static and Dynamic Algorithms for Small Integer Weights

Egor Gorbachev and Tomasz Kociumaka

Saarland University and Max Planck Institute for Informatics

STOC 2025 June 27th, 2025, Prague

Weighted Edit Distance

Weighted Edit Distance $\operatorname{ed}^w(X,Y)$

$$w \colon (\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\}) \to \mathbb{R}_{\geq 0}$$

The minimum cost of transforming X into Y by editing individual characters, where:

- inserting b costs $w(\varepsilon, b)$;
- deleting a costs $w(a, \varepsilon)$;
- substituting a for b costs w(a, b).

		ε	a	b
w:	ε	0	1	4
ω.	a	1	0	2
	b	3	2	0

$$\operatorname{ed}^w(X,Y) = 6$$

Weighted Edit Distance

Weighted Edit Distance $\operatorname{ed}^w(X,Y)$

$$w : (\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\}) \to \mathbb{R}_{\geq 0}$$

The minimum cost of transforming X into Y by editing individual characters, where:

- inserting b costs $w(\varepsilon, b)$;
- deleting a costs $w(a, \varepsilon)$;
- substituting a for b costs w(a, b).

		ω	a	b
w:	ε	0	1	1
ω.	a	1	0	1
	b	1	1	0
	D	1	<u> </u>	LU

$$ed(X,Y) = 3$$

Ν	lotation:	n =	X	+	Y
---	-----------	-----	---	---	---

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	

Notation:	n =	X -	$\vdash Y $,	k =	ed ^w ((X, Y)	
eights							

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	

Notation: $n =$	X + Y	$ k = \epsilon$	$\operatorname{ed}^w(X,Y)$
-----------------	---------	------------------	----------------------------

Reference	Time	Weights
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$

Notation: $n =$	X + Y	x , $k=1$	$ed^w(X,Y)$
-----------------	---------	-----------	-------------

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	

Notation: $n =$	X +	Y , k	$= ed^w$	(X, Y))
-----------------	------	---------	----------	--------	---

Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \le k \le n$

Notation: $n =$	X + Y ,	$k = ed^w$	(X,Y)
-----------------	---------	------------	-------

Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \leq k \leq n$
[DGHKS23]	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	

Notation: n	= X +	Y , $k =$	$ed^w(X,Y)$
---------------	---------	-----------	-------------

Referenc	ce Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \le k \le n$
[DGHKS23	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	
[CKW23	$\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$	$\mathbb{R}_{\geq 1}$	under APSP, $\sqrt{n} \le k \le n$

Notation: n	= X +	Y , $k =$	$ed^w(X,Y)$
---------------	---------	-----------	-------------

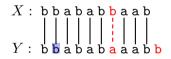
Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \le k \le n$
[DGHKS23]	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	
[CKW23]	$\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$	$\mathbb{R}_{\geq 1}$	under APSP, $\sqrt{n} \leq k \leq n$
[this work]	$\widetilde{\mathcal{O}}(n+Wk^2)$	$\{1,2,\ldots,W\}$	under OVH, $1 \leq k \leq n$ and $W = n^{o(1)}$

Notation:	n = X	(+ Y ,	$k=ed^w$	(X,Y)
-----------	--------	---------	----------	-------

Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \le k \le n$
[DGHKS23]	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	
[CKW23]	$\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$	$\mathbb{R}_{\geq 1}$	under APSP, $\sqrt{n} \leq k \leq n$
[this work]	$\widetilde{\mathcal{O}}(n+Wk^2)$	$\{1,2,\ldots,W\}$	under OVH, $1 \leq k \leq n$ and $W = n^{o(1)}$
[this work]	$\widetilde{\mathcal{O}}(n+k^{2.5})$	$\mathbb{Z}_{\geq 1}$	

Problem

Problem



$$X$$
: bbababbaab
 Y : bababaaabb

$$\operatorname{ed}(X,Y)=3$$

Problem

$$\operatorname{ed}(X,Y)=2$$

Problem

$$X$$
: bbababababb
 Y : bbabababaaabb

$$\operatorname{ed}(X,Y)=2$$

Problem

$$\operatorname{ed}(X,Y)=3$$

Notation: n=|X|+|Y|, $k=\operatorname{ed}^w(X,Y)$

Reference Update Time

Weights

Matching Lower Bound

Notation: n=|X|+|Y|, $k=\operatorname{ed}^w(X,Y)$

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	

Notation:
$$n=|X|+|Y|$$
, $k=\operatorname{ed}^w(X,Y)$

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,,Tis08, CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH (or SETH)

Notation: $n =$	X + Y	, $k=ed^u$	$\mathcal{C}(X,Y)$
-----------------	---------	------------	--------------------

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH (or SETH)	$\{1\}$	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under APSP	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]

Notation: $n =$	X +	Y ,	k =	ed^w	(X,	Y))
-----------------	------	-----	-----	--------	-----	----	---

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH (or SETH)	{1}	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under APSP	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]
	$\mathbb{R}_{\geq 1}$	$\widetilde{\mathcal{O}}(k^3)$	[CKW23]

Notation: $n =$	X +	Y ,	k =	ed^w	(X,	Y))
-----------------	------	-----	-----	--------	-----	----	---

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH (or SETH)	{1}	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under APSP	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]
	$\mathbb{R}_{\geq 1}$	$\widetilde{\mathcal{O}}(k^3)$	[CKW23]
	$\mathbb{R}_{\geq 1}$	$\widetilde{\mathcal{O}}(k^2)^\star$	[B G K25]

Notation:	n =	X +	Y ,	k =	$ed^{oldsymbol{w}}$	(X,Y)
-----------	-----	------	-----	-----	---------------------	-------

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,,Tis08, CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH (or SETH)
[CKM20]	$\widetilde{\mathcal{O}}(n^{1.5})$	any	under APSP
[CKW23]	$\widetilde{\mathcal{O}}(k^3)$	$\mathbb{R}_{\geq 1}$	
[B G K25]	$\widetilde{\mathcal{O}}(k^2)^\star$	$\mathbb{R}_{\geq 1}$	
[this work]	$\widetilde{\mathcal{O}}(Wk^2)$	$\{1, 2, \ldots, W\}$	

Notation:
$$n=|X|+|Y|$$
, $k=\operatorname{ed}^w(X,Y)$

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,,Tis08, CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH (or SETH)
[CKM20]	$\widetilde{\mathcal{O}}(n^{1.5})$	any	under APSP
[CKW23]	$\widetilde{\mathcal{O}}(k^3)$	$\mathbb{R}_{\geq 1}$	
[B G K25]	$\widetilde{\mathcal{O}}(k^2)^\star$	$\mathbb{R}_{\geq 1}$	
[this work]	$\widetilde{\mathcal{O}}(W^2k)$	$\{1, 2, \ldots, W\}$	

Notation:
$$n=|X|+|Y|$$
, $k=\operatorname{ed}^w(X,Y)$

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,,Tis08, CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH (or SETH)
[CKM20]	$\widetilde{\mathcal{O}}(n^{1.5})$	any	under APSP
[CKW23]	$\widetilde{\mathcal{O}}(k^3)$	$\mathbb{R}_{\geq 1}$	
[B G K25]	$\widetilde{\mathcal{O}}(k^2)^\star$	$\mathbb{R}_{\geq 1}$	
[this work]	$\widetilde{\mathcal{O}}(W^2k)$	$\{1, 2, \ldots, W\}$	under OVH, $1 \leq k \leq n$ and $W = n^{o(1)}$

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} < k < n$). [CKW23]
 - $\widetilde{\mathcal{O}}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). **[this work]** [this work]
 - $ilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights.

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} \leq k \leq n$).

[CKW23]

■ $\widetilde{\mathcal{O}}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k \leq n$ and $W=n^{o(1)}$).
■ $\widetilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights.

[this work] [this work]

- Dynamic algorithms:
 - $\widetilde{\mathcal{O}}(W^2k)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$).

[this work]

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} < k < n$). [CKW23]
 - $\mathcal{O}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k \leq n$ and $W=n^{o(1)}$). [this work] [this work]
 - $\widetilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary integer weights.
- Dynamic algorithms:
 - $\widetilde{\mathcal{O}}(W^2k)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). [this work]
- Takeaway: The past few years have seen the development of many new edit distance tools, and some are likely to yield more results in the future.

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} \leq k \leq n$). [CKW23] \hookrightarrow Faster algorithm for $\sqrt[3]{n} \ll k \ll \sqrt{n}$? $\widetilde{\mathcal{O}}(n+k^{2.99})$?
 - $\widetilde{\mathcal{O}}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). [this work]
 - lacktriangledown $\widetilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights.

[this work]

- Dynamic algorithms:
 - $lackbox{$\widetilde{\mathcal{O}}(W^2k)$ for weights in } \{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). [this work]
- Takeaway: The past few years have seen the development of many new edit distance tools, and some are likely to yield more results in the future.

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} \leq k \leq n$). [CKW23]
 - \hookrightarrow Faster algorithm for $\sqrt[3]{n} \ll k \ll \sqrt{n}$? $\widetilde{\mathcal{O}}(n+k^{2.99})$?
 - $\widetilde{\mathcal{O}}(n+Wk^2) \text{ for weights in } \{1,2,\ldots,W\} \text{ (tight if } k \leq n \text{ and } W=n^{o(1)}).$ [this work]
 - $\widetilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights. [this work] $\hookrightarrow \widetilde{\mathcal{O}}(n+k^{2.49})$?
- Dynamic algorithms:
 - $ilde{\mathcal{O}}(W^2k)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). [this work]
- Takeaway: The past few years have seen the development of many new edit distance tools, and some are likely to yield more results in the future.

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} \leq k \leq n$). [CKW23]
 - \hookrightarrow Faster algorithm for $\sqrt[3]{n} \ll k \ll \sqrt{n}$? $\widetilde{\mathcal{O}}(n+k^{2.99})$?
 - $\widetilde{\mathcal{O}}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$). [this work]
 - $\widetilde{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights. [this work] $\hookrightarrow \widetilde{\mathcal{O}}(n+k^{2.49})$?
- Dynamic algorithms:
 - $\widetilde{\mathcal{O}}(W^2k)$ for weights in $\{1, 2, \dots, W\}$ (tight if $k \leq n$ and $W = n^{o(1)}$). [this work] $\hookrightarrow \widetilde{\mathcal{O}}(Wk)$?
- Takeaway: The past few years have seen the development of many new edit distance tools, and some are likely to yield more results in the future.

- Static algorithms:
 - $\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$ for arbitrary normalized weights (tight if $\sqrt{n} \leq k \leq n$).

[CKW23]

- \hookrightarrow Faster algorithm for $\sqrt[3]{n} \ll k \ll \sqrt{n}$? $\widetilde{\mathcal{O}}(n+k^{2.99})$?
- $\widetilde{\mathcal{O}}(n+Wk^2)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$).

[this work]
[this work]

- $lackbox{}{\mathcal{O}}(n+k^{2.5})$ for arbitrary *integer* weights.
 - $\hookrightarrow \widetilde{\mathcal{O}}(n+k^{2.49})$?
- Dynamic algorithms:
 - $\widetilde{\mathcal{O}}(W^2k)$ for weights in $\{1,2,\ldots,W\}$ (tight if $k\leq n$ and $W=n^{o(1)}$).

[this work]

- $\hookrightarrow \mathcal{O}(Wk)$?
- Takeaway: The past few years have seen the development of many new edit distance tools, and some are likely to yield more results in the future.

Thank you!

Long talk recording