Bounded Weighted Edit Distance

Dynamic Algorithms and Matching Lower Bounds

Itai Boneh, Egor Gorbachev, Tomasz Kociumaka

Reichman University, University of Haifa, Saarland University, and Max Planck Institute for Informatics

ESA 2025 September 17th, 2025, Warsaw

Weighted Edit Distance

Weighted Edit Distance $\operatorname{ed}^w(X,Y)$

$$w \colon (\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\}) \to \mathbb{R}_{\geq 0}$$

The minimum cost of transforming X into Y by editing individual characters, where:

- inserting b costs $w(\varepsilon \mapsto b)$;
- deleting a costs $w(a \mapsto \varepsilon)$;
- substituting a for b costs $w(a \mapsto b)$.

		ε	a	b
w:	ε	0	1	4
	a	1	0	2
	b	3	2	0

$$\operatorname{ed}^w(X,Y)=6$$

Weighted Edit Distance

Weighted Edit Distance $\operatorname{ed}^w(X,Y)$

$$w \colon (\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\}) \to \mathbb{R}_{\geq 0}$$

The minimum cost of transforming X into Y by editing individual characters, where:

- inserting b costs $w(\varepsilon \mapsto b)$;
- deleting a costs $w(a \mapsto \varepsilon)$;
- substituting a for b costs $w(a \mapsto b)$.

		ε	a	b
w:	ε	0	1	1
	a	1	0	1
	b	1	1	0
			_	_

$$ed(X,Y) = 3$$

Notation: $n =$	= X +	Y
-----------------	---------	---

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	

Notation: $n =$	X +	- $ Y $,	k =	ed^w	(X,Y))
-----------------	------	-----------	-----	--------	-------	---

Reference	Time	Weights
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$

Notation: $n =$	X +	- $ Y $,	k =	ed^w	(X,Y))
-----------------	------	-----------	-----	--------	-------	---

Reference	Time	Weights	
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	

Notation: $n =$	X + Y	, $k=ed^u$	$^{v}(X,Y)$
-----------------	---------	------------	-------------

Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	under OVH, $1 \le k \le n$

Notation: $n =$	X +	Y ,	$k = ed^{\imath}$	$^{v}(X,Y)$
-----------------	------	-----	-------------------	-------------

Referen	ce Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF7	4] $\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye8	6] $\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV8	8] $\mathcal{O}(n+k^2)$	{1}	$\text{under OVH, } 1 \leq k \leq n$
[DGHKS2	$3] \qquad \mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	

Notation: $n =$	X +	Y ,	$k = ed^w$	(X,Y)
-----------------	------	-----	------------	-------

	Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,	Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[U	kk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
	[LV88]	$\mathcal{O}(n+k^2)$	{1}	$\text{under OVH, } 1 \leq k \leq n$
	[DGHKS23]	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	
	[CKW23]	$\widetilde{\mathcal{O}}(n+k^3)$	$\mathbb{R}_{\geq 1}$	

Notation: $n =$	X + Y	$^{\prime} $, $k=\epsilon$	$ed^w(X,Y)$
-----------------	---------	-----------------------------	-------------

Reference	Time	Weights	Matching Lower Bound
[Vin68,NW70,Sel74,WF74]	$\mathcal{O}(n^2)$	any	under OVH (or SETH)
[Ukk85,Mye86]	$\mathcal{O}(nk)$	$\mathbb{R}_{\geq 1}$	
[LV88]	$\mathcal{O}(n+k^2)$	{1}	$\text{under OVH, } 1 \leq k \leq n$
[DGHKS23]	$\mathcal{O}(n+k^5)$	$\mathbb{R}_{\geq 1}$	
[CKW23]	$\widetilde{\mathcal{O}}(n+k^3)$	$\mathbb{R}_{\geq 1}$	
[CKW23]	$\widetilde{\mathcal{O}}(n+\sqrt{nk^3})$	$\mathbb{R}_{\geq 1}$	under APSPH, $\sqrt{n} \le k \le n$

Problem

Problem

$$\operatorname{ed}(X,Y)=3$$

Problem

$$\operatorname{ed}(X,Y)=2$$

Problem

$$\operatorname{ed}(X,Y)=2$$

Problem

$$\operatorname{ed}(X,Y) = 3$$

Notation: n=|X|+|Y|, $k=\operatorname{\sf ed}^w(X,Y)$

Reference Update Time Weights Matching Lower Bound

Notation:
$$n=|X|+|Y|$$
, $k=\operatorname{ed}^w(X,Y)$

Reference	Update Time	Weights	Matching Lower Bound
[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	

	Reference	Update Time	Weights	Matching Lower Bound
	[LV88+MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,.	,Tis08, CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH

Re	ference	Update Time	Weights	Matching Lower Bound
[LV88+1	MSU94]	$\widetilde{\mathcal{O}}(k^2)$	{1}	
[LMS98,,Tis08, 0	CKM20]	$\widetilde{\mathcal{O}}(n)$	{1}	under OVH
	[G K25]	$\widetilde{\mathcal{O}}(k)$	{1}	under OVH

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH	{1}	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under OVH	{1}	$\widetilde{\mathcal{O}}(k)$	[G K25]
under APSPH	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]

Notation: $n =$	X +	Y ,	k =	ed^w	(X,	Y)	
-----------------	------	-----	-----	--------	-----	----	--

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH	{1}	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under OVH	{1}	$\widetilde{\mathcal{O}}(k)$	[G K25]
under APSPH	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]
	$\mathbb{R}_{\geq 1}$	$\widetilde{\mathcal{O}}(k^3)$	[CKW23]

Notation: $n =$	X +	Y ,	k =	ed^w	(X,	Y)
-----------------	------	-----	-----	--------	-----	---	---

Matching Lower Bound	Weights	Update Time	Reference
	{1}	$\widetilde{\mathcal{O}}(k^2)$	[LV88+MSU94]
under OVH	{1}	$\widetilde{\mathcal{O}}(n)$	[LMS98,,Tis08, CKM20]
under OVH	{1}	$\widetilde{\mathcal{O}}(k)$	[G K25]
under APSPH	any	$\widetilde{\mathcal{O}}(n^{1.5})$	[CKM20]
	$\mathbb{R}_{\geq 1}$	$\widetilde{\mathcal{O}}(k^3)$	[CKW23]
	$\mathbb{R}_{>1}$	$\widetilde{\mathcal{O}}(k^2)^{\star}$	[this work]

Theorem [CKW23]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$.

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b

b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b

b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

- b b
- b b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

- b b a
- b b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a

b b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b

b b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b

b b a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a

b b a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a

b b a b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b

b b a b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b

b b a b a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

bbababb

b b a b a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

bbababb

b b a b a b b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a

b b a b a b b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a

b b a b a b b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

bbababbaa

b b a b a b b a

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

bbababbaa

bbababbaa

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a a b

bbababbaa

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a a b

bbababbaab

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

bbababbaab

b b b a b b a a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a a b

b b b b a a b a a b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\mathrm{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\mathrm{ed}(X,Y) \leq 4$.

b b a b a b b a a b

b b b a a b a b b

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\operatorname{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\operatorname{ed}(X,Y) \leq 4$.

b b a b a b b a a b

b b b a a b a b b

Theorem 2 [this work]

Assuming the APSP Hypothesis, there is no dynamic weighted edit distance algorithm with $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ update time.

Theorem 1 [this work]

Assuming the APSP Hypothesis, there is no $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ -time algorithm for computing $\operatorname{ed}^w(X,Y)$ for instances satisfying $\sqrt{n} \leq k \leq n$ and $\operatorname{ed}(X,Y) \leq 4$.

b b a b a b b a a b

b b b b a a b a b b

Theorem 2 [this work]

Assuming the APSP Hypothesis, there is no dynamic weighted edit distance algorithm with $\mathcal{O}(\sqrt{nk^{3-\varepsilon}})$ update time.

$$\text{Fix } k. \text{ Maintain } \operatorname{ed}_{\leq k}^w(X,Y) = \begin{cases} \operatorname{ed}^w(X,Y) & \text{if } \operatorname{ed}^w(X,Y) \leq k, \\ \infty & \text{otherwise.} \end{cases}$$

Theorem 3 [this work]

For every $\gamma \in [0,1]$, there is a dynamic algorithm with $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time that dynamically maintains $\operatorname{ed}_{\leq k}^w(X,Y)$.

Theorem 3 [this work]

For every $\gamma \in [0,1]$, there is a dynamic algorithm with $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time that dynamically maintains $\operatorname{ed}_{\leq k}^w(X,Y)$.

Theorem 4 [this work]

For $\gamma \in [0.5, 1)$, the update time of Theorem 3 cannot be improved by any polynomial factor assuming the APSP Hypothesis.

Theorem 3 [this work]

For every $\gamma \in [0,1]$, there is a dynamic algorithm with $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time that dynamically maintains $\operatorname{ed}_{\leq k}^w(X,Y)$.

Theorem 4 [this work]

For $\gamma \in [0.5, 1)$, the update time of Theorem 3 cannot be improved by any polynomial factor assuming the APSP Hypothesis.

Theorem 3 (Extended Version)

[this work]

For every $\gamma \in [0,1]$, there is a dynamic algorithm that maintains a string X and after $\widetilde{\mathcal{O}}(nk^{\gamma})$ -time preprocessing supports the following operations:

- lacksquare Apply a character edit, substring deletion, or copy-paste to X in $\mathcal{O}(k^2)$ time.
- Given query-access to testing equality of substrings of X and Y, compute $\operatorname{ed}_{\leq k}^w(X,Y)$ in $\widetilde{\mathcal{O}}(k^{3-\gamma})$ time.

Our Results:

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{k}^{w}(X,Y)$ for any real constant $\gamma \in [0,1]$.

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{< k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - \blacksquare Matching conditional lower bound for $\gamma \in [0.5,1).$

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\operatorname{ed}^w(X,Y)$ for strings satisfying $\operatorname{ed}(X,Y) = \mathcal{O}(1)$.

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{< k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\mathrm{ed}^w(X,Y)$ for strings satisfying $\mathrm{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\operatorname{ed}^w(X,Y)$ for strings satisfying $\operatorname{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\operatorname{ed}^w(X,Y)$ for strings satisfying $\operatorname{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?
 - Only $\Omega(k^{1.5-o(1)})$ lower bound is known.

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\operatorname{ed}^w(X,Y)$ for strings satisfying $\operatorname{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?
 - Only $\Omega(k^{1.5-o(1)})$ lower bound is known.
 - Would $\gamma > 1$ make sense?

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\operatorname{ed}^w(X,Y)$ for strings satisfying $\operatorname{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?
 - Only $\Omega(k^{1.5-o(1)})$ lower bound is known.
 - Would $\gamma > 1$ make sense?
 - What is the time complexity of *static* weighted edit distance when $k \in [\sqrt[3]{n}, \sqrt{n}]$?

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\mathrm{ed}^w(X,Y)$ for strings satisfying $\mathrm{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?
 - Only $\Omega(k^{1.5-o(1)})$ lower bound is known.
 - Would $\gamma > 1$ make sense?
 - What is the time complexity of *static* weighted edit distance when $k \in [\sqrt[3]{n}, \sqrt{n}]$?
 - Could make sense to first focus on the case of ed(X,Y) = O(1).

- Our Results:
 - $\widetilde{\mathcal{O}}(nk^{\gamma})$ preprocessing and $\widetilde{\mathcal{O}}(k^{3-\gamma})$ update time algorithm for dynamically maintaining $\operatorname{ed}_{\leq k}^w(X,Y)$ for any real constant $\gamma \in [0,1]$.
 - Matching conditional lower bound for $\gamma \in [0.5, 1)$.
 - New $\Omega(\sqrt{nk^{3-o(1)}})$ conditional lower bound for $k \in [\sqrt{n}, n]$ for statically computing $\mathrm{ed}^w(X,Y)$ for strings satisfying $\mathrm{ed}(X,Y) = \mathcal{O}(1)$.
- Open Problems:
 - What is the optimal update time for $\gamma = 1$?
 - Only $\Omega(k^{1.5-o(1)})$ lower bound is known.
 - Would $\gamma > 1$ make sense?
 - What is the time complexity of *static* weighted edit distance when $k \in [\sqrt[3]{n}, \sqrt{n}]$?
 - Could make sense to first focus on the case of ed(X,Y) = O(1).

Thank you!