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Weighted Edit Distance

Weighted Edit Distance edw(X,Y ) w : (Σ ∪ {ε})× (Σ ∪ {ε}) → R≥0

The minimum cost of transforming X into Y by editing individual characters, where:

inserting b costs w(ε 7→ b);

deleting a costs w(a 7→ ε);

substituting a for b costs w(a 7→ b).

w :

ε a b
ε 0 1 4
a 1 0 2
b 3 2 0

X :

Y :

b b a b a b b a a b

b a b a b a a a b b

edw(X,Y ) = 6
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Static State of the Art
Notation: n = |X| + |Y |

, k = edw(X,Y )

Reference Time Weights

Matching Lower Bound

[Vin68,NW70,Sel74,WF74] O(n2) any

under OVH (or SETH)

[Ukk85,Mye86] O(nk) R≥1

[LV88] O(n+ k2) {1}

under OVH, 1 ≤ k ≤ n

[DGHKS23] O(n+ k5) R≥1

[CKW23] Õ(n+ k3) R≥1

[CKW23] Õ(n+
√
nk3) R≥1 under APSPH,

√
n ≤ k ≤ n
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√
nk3) R≥1 under APSPH,

√
n ≤ k ≤ n

I. Boneh, E. Gorbachev, T. Kociumaka Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds 3/8



Static State of the Art
Notation: n = |X| + |Y |, k = edw(X,Y )

Reference Time Weights Matching Lower Bound

[Vin68,NW70,Sel74,WF74] O(n2) any under OVH (or SETH)

[Ukk85,Mye86] O(nk) R≥1

[LV88] O(n+ k2) {1} under OVH, 1 ≤ k ≤ n

[DGHKS23] O(n+ k5) R≥1
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√
nk3) R≥1 under APSPH,

√
n ≤ k ≤ n

I. Boneh, E. Gorbachev, T. Kociumaka Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds 3/8



Dynamic Weighted Edit Distance

Problem

Maintain strings X,Y ∈ Σ≤n subjects to updates (character edits) and report edw(X,Y ) after
each update.

w :

ε a b
ε 0 1 1
a 1 0 1
b 1 1 0

X :

Y :

b b a b a b b a a b

b a b a b a a a b b

ed(X,Y ) = 3
b b a b a b b a a b

b b a b a b a a a b bb

ed(X,Y ) = 2
b b a b a b b a b bb

b b a b a b a a a b b

ed(X,Y ) = 2
b b a b a b b a b b

b b b a b a a a b b

ed(X,Y ) = 3
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Dynamic State of the Art
Notation: n = |X| + |Y |, k = edw(X,Y )

Reference Update Time Weights Matching Lower Bound

[LV88+MSU94] Õ(k2) {1}

[LMS98,. . . ,Tis08, CKM20] Õ(n) {1} under OVH

[GK25] Õ(k) {1} under OVH

[CKM20] Õ(n1.5) any under APSPH

[CKW23] Õ(k3) R≥1

[this work] Õ(k2)⋆ R≥1
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The Asterisk

Theorem [CKW23]

Assuming the APSP Hypothesis, there is no O(
√
nk3−ε)-time algorithm for computing

edw(X,Y ) for instances satisfying
√
n ≤ k ≤ n.

b

b

Theorem 2 [this work]

Assuming the APSP Hypothesis, there is no dynamic weighted edit distance algorithm with
O(

√
nk3−ε) update time.

Fix k. Maintain edw≤k(X,Y ) =

{
edw(X,Y ) if edw(X,Y ) ≤ k,

∞ otherwise.
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Our Dynamic Results

Theorem 3 [this work]

For every γ ∈ [0, 1], there is a dynamic algorithm with Õ(nkγ) preprocessing and Õ(k3−γ)
update time that dynamically maintains edw≤k(X,Y ).

Theorem 4 [this work]

For γ ∈ [0.5, 1), the update time of Theorem 3 cannot be improved by any polynomial factor
assuming the APSP Hypothesis.

Theorem 3 (Extended Version) [this work]

For every γ ∈ [0, 1], there is a dynamic algorithm that maintains a string X and after
Õ(nkγ)-time preprocessing supports the following operations:

Apply a character edit, substring deletion, or copy-paste to X in Õ(k2) time.

Given query-access to testing equality of substrings of X and Y , compute edw≤k(X,Y ) in

Õ(k3−γ) time.
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Summary and Open Problems

Our Results:

Õ(nkγ) preprocessing and Õ(k3−γ) update time algorithm for dynamically maintaining
edw≤k(X,Y ) for any real constant γ ∈ [0, 1].
Matching conditional lower bound for γ ∈ [0.5, 1).

New Ω(
√
nk3−o(1)) conditional lower bound for k ∈ [

√
n, n] for statically computing

edw(X,Y ) for strings satisfying ed(X,Y ) = O(1).
Open Problems:

What is the optimal update time for γ = 1?

Only Ω(k1.5−o(1)) lower bound is known.
Would γ > 1 make sense?

What is the time complexity of static weighted edit distance when k ∈ [ 3
√
n,

√
n]?

Could make sense to first focus on the case of ed(X,Y ) = O(1).
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