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Klee’s Measure Problem

Klee’s Measure Problem (KMP)

Input: n axis-parallel boxes in Rd.
Output: volume of the union of these boxes.

basic geometric primitive

many related problems, e.g.:

depth of axis-parallel boxes
largest empty (anchored) box
discrepancy of boxes
. . .
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Klee’s Measure Problem: Algorithms
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d = 1 d = 2 d ≥ 3

[Klee ’77] O(n log n)
[Bentley ’77] O(n log n) O(nd−1 log n)
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d
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Klee’s Measure Problem: Lower Bounds

[Chan FOCS’13]→ tight lower bound of Ω(n
d
2−o(1)) for combinatorial

algorithms under the k-clique hypothesis.
Can we make these lower bounds hold for general algorithms?

d = 3 d = 4 d = 5 d ≥ 6
UB: [Chan FOCS’13] O(n1.5) O(n2) O(n2.5) O(nd/2)

LB: [Künnemann FOCS’22] Ω(n1.5) Ω(n1.7777...) Ω(n2.0833...) Ω(nd/3+1/3+Θ(1/d))

LB: this paper Ω(n1.9047...) Ω(n2.2222...) Ω(nd/3+2
√
d/9−o(

√
d))



Klee’s Measure Problem: Lower Bounds

[Chan FOCS’13]→ tight lower bound of Ω(n
d
2−o(1)) for combinatorial

algorithms under the k-clique hypothesis.
Can we make these lower bounds hold for general algorithms?

d = 3 d = 4 d = 5 d ≥ 6
UB: [Chan FOCS’13] O(n1.5) O(n2) O(n2.5) O(nd/2)
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k-Clique Hypothesis

k-Clique
Input: k-partite graph G = (V1 ∪ V2 ∪ . . . ∪ Vk, E), |Vi| = n for all i.
Output: Does G have a clique of size k?
I.e., v1 ∈ V1, . . ., vk ∈ Vk, s.t. {va, vb} ∈ E for all a ̸= b.

Best known algorithm O(n
𝜔
3 k) for k divisible by 3.

Combinatorial Clique Hypothesis

For any k ≥ 3 there is no O(nk−𝜀)
combinatorial algorithm for k-Clique.

V1

v1

V2V3

v2v3



k-HyperClique Hypothesis

3-uniform k-HyperClique
Input: k-partite 3-uniform hypergraph G = (V1 ∪ V2 ∪ . . . ∪ Vk, E), |Vi| = n for
all i.
Output: Does G have a hyperclique of size k?
I.e., v1 ∈ V1, . . ., vk ∈ Vk, s.t. {va, vb, vc} ∈ E for all distinct a, b, c.

Best known algorithm nk±o(1) (essentially bruteforce).

3-uniform HyperClique Hypothesis

For any k > 3 there is no O(nk−𝜀) algorithm for 3-uniform k-hyperclique.

See [Lincoln, V. Williams, Williams’18], [Bringmann, Fischer, Künnemann’19], [Künnemann,
Marx’20].



Chan’s Combinatorial Lower Bound
Reduction from triangle detection.

V1

a

V2V3

b
c

want: cube for (a, b, c) is covered by a box⇔
(a, b, c) do not form a triangle

For all non-adjacent a ∈ V1, b ∈ V2 add a
box covering all (a, b, ·) unit cubes.
For all non-adjacent a ∈ V1, c ∈ V3 add a
box covering all (a, ·, c) unit cubes.
For all non-adjacent b ∈ V2, c ∈ V3 add a
box covering all (·, b, c) unit cubes.
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Chan’s Combinatorial Lower Bound
Reduction from triangle detection.

V1

a

V2V3

b
c

want: cube for (a, b, c) is covered by a box⇔
(a, b, c) do not form a triangle

We create N = O(n2) boxes.

Ω(N
d
2−o(1)) lower bound for

combinatorial algorithms.
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Lexicographic encoding

Encode a sequence of parts
(Vi1 , Vi2 , . . . , Vit) in each dimension
lexicographically.

We can specify choices
(·, ·, . . . , vij , . . . , ·) as nj−1 boxes.

(1, 1)(1, 2)(1, 3)(2, 1)(2, 2)(2, 3)(3, 1)(3, 2)(3, 3)



Lexicographic encoding

Encode a sequence of parts
(Vi1 , Vi2 , . . . , Vit) in each dimension
lexicographically.

We can specify choices
(·, ·, . . . , vij , . . . , ·) as nj−1 boxes.

(1, 1)(1, 2)(1, 3)(2, 1)(2, 2)(2, 3)(3, 1)(3, 2)(3, 3)



Redundant Encoding
Redundancy: encode parts
multiple times in different
dimensions.

1 ∀va ∈ Va, vb ∈ Vb, vc ∈ Vc s.t.
{va, vb, vc} /∈ E add a box
covering cubes corresponding
to choosing this triplet into
the hyperclique.

2 Cover inconsistent cubes: if
for the same part different
vertices are chosen in
different dimensions.

V1

V2

V3V4

V5

V6

(vi1, vi2, . . . , va,———)

(vj1, vj2, . . . , vb,———)

(v
k
1
,v

k
2
,.
..
,v

c,
—
—
—
)
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dimensions.
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Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.
Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

s1,1s1,2 s1,3 . . .

s2,1s2,2 s2,3 . . .

s4,1s4,2 s4,3 . . .

s3,1s3,2 s3,3 . . .

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.

Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

s1,1s1,2 s1,3 . . . a

s2,1s2,2 s2,3 . . . c

s4,1s4,2 s4,3 . . . b

s3,1s3,2 s3,3 . . .

. . .

. . .

. . .

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.

Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

s1,1s1,2 s1,3 . . . a

s2,1s2,2 s2,3 . . . c

s4,1s4,2 s4,3

. . . b

s3,1s3,2 s3,3 . . .

. . .

. . .

. . .

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.
Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

s1,1s1,2 s1,3 . . . a

s2,1s2,2 s2,3 . . .

a

s4,1s4,2 s4,3 . . .a

s3,1s3,2 s3,3 . . .

. . .

. . .

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.
Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

...

1

2

d

d + 1

d + 1

d + 1

(d, d+ 1, 3):

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Formalizing the setup

Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length ≤ 𝛼.
Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length ≤ 𝛼 + 1.

...

1

2

d

d + 1

d + 1

d + 1

(d, d+ 1, 3):

Theorem 1 (Helpful tool)

(d, k, 𝛼)-prefix covering design⇒ Ω(N
k
𝛼
−o(1)) lower bound for KMP in Rd

based on the 3-uniform k-hyperclique hypothesis.



Prefix Covering Designs: Examples
Definition: (d, k, 𝛼)-prefix covering design — d sequences over {1, . . . , k} s.t.:

Every triplet of elements can be covered by 3 prefixes of total length ≤ 𝛼.
The first and last occurrences of any element can be covered by 2
prefixes of total length ≤ 𝛼 + 1.

Implicit in previous work [Künnemann FOCS’22]:

There exists a (d, d2, 3d − 3)-prefix covering design giving an
Ω(N

d
3+

1
3+Θ( 1d )) lower bound.
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(3, 3g, 2g+ 1)-prefix covering design for any g ≥ 1:

1 2 . . . g 2g 2g − 1 . . . g + 1

g + 1 . . . 2g 3g 3g − 1 . . . 2g + 1g + 2

2g + 1 . . . 3g g g − 1 . . . 12g + 2

Ω(N
3g
2g+1−o(1))

g→∞−−−→ Ω(N
3
2−o(1)) lower bound for d = 3.
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Prefix Covering Designs: New Results for d = 4, 5

Used the help of a SAT-solver to find good prefix covering designs.

Theorem 2
There is a (4, 40, 21)-prefix covering design yielding an Ω(N1.9047...−o(1)) lower
bound for R4.

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40, 19, 28, 37, 26),

s2 = (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 9, 38, 27, 36),

s3 = (21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 39, 8, 7, 37),

s4 = (31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 10, 29, 18, 17, 27).

Theorem 2
There is a (4, 40, 21)-prefix covering design yielding an Ω(N1.9047...−o(1)) lower
bound for R4.

Theorem 3
There is a (5, 40, 18)-prefix covering design yielding an Ω(N2.2222...−o(1)) lower
bound for R5.

Theorem 4
Prefix covering designs cannot give a tight lower bound already for d = 4.
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Prefix Covering Designs: New Results for all d

(v, c, 2) Covering Design — collection of c-sized subsets B1, . . ., Bd of the
universe {1, 2, . . . , v} such that every couple of elements of the universe
is fully contained in some Bi. (see La Jolla covering repository by D. M.
Gordon: dmgordon.org/cover)

Examples: finite projective planes, balanced incomplete block designs.
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Prefix Covering Designs: New Results Exponents Table

d Upper bound
[Chan’13]

Previous lower bound
[Künnemann’22]

SAT-solver
lower
bound

Covering
designs lower
bound

(v, c) of the
covering
design

3 1.5 1.5 1.5 (3, 2)
4 2 1.777 1.9047 1.8461 (20, 12)
5 2.5 2.0833 2.2222 2.1929 (45, 25)
6 3 2.4 2.5714 (6, 3)
7 3.5 2.7222 3 (7, 3)
8 4 3.0476 3.3333 (24, 10)
9 4.5 3.375 3.6818 (90, 36)
...

...
...

...
...



Recap and Open Questions

Our Results:
We showed lower bounds of Ω(N1.9047...) in R4, Ω(N2.2222...) in R5, and
Ω(N

d
3+Θ(

√
d)) in Rd for Klee’s Measure Problem and related problems

under the 3-uniform hyperclique hypothesis.
These lower bounds are close to the best possible achievable using
prefix covering designs.

Open Questions:
Can we solve Klee’s Measure Problem faster for large d?
Can we show tight bounds for d = 4, 5, 6 using some different method?
Can we show lower bounds of form Ω(N𝛾·d−o(d)) for 𝛾 > 1/3?


