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Klee’s Measure Problem

Klee’s Measure Problem (KMP)

Input: n axis-parallel boxes in R
Output: volume of the union of these boxes.
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Klee’s Measure Problem (KMP)

Input: n axis-parallel boxes in R
Output: volume of the union of these boxes.

@ basic geometric primitive

@ many related problems, e.g.: /

depth of axis-parallel boxes |
largest empty (anchored) box
discrepancy of boxes ‘
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Klee’s Measure Problem: Algorithms

Klee’s Measure Problem (KMP)

Input: n axis-parallel boxes in R
Output: volume of the union of these boxes.

I
d= d=2 d>3
[Klee 77] O(nlogn)
[Bentley '77] O(nlogn) O(n“~tlogn)
[Overmars, Yap SICOMP’91] O(n% log n)
[Chan Comp. Geom.10] 0(n12000g" )
[Chan FOCS™13] o(n?)
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@ [Chan FOCS'13] — tight lower bound of Q(nz—°M") for combinatorial
algorithms under the k-clique hypothesis.

@ Can we make these lower bounds hold for general algorithms?
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@ [Chan FOCS'13] — tight lower bound of Q(nz—°M") for combinatorial
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@ Can we make these lower bounds hold for general algorithms?
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Klee’s Measure Problem: Lower Bounds

@ [Chan FOCS'13] — tight lower bound of Q(nz—°M") for combinatorial
algorithms under the k-clique hypothesis.

@ Can we make these lower bounds hold for general algorithms?
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Klee’s Measure Problem: Lower Bounds

@ [Chan FOCS'13] — tight lower bound of Q(nz—°M") for combinatorial
algorithms under the k-clique hypothesis.

@ Can we make these lower bounds hold for general algorithms?

d=3 d=4 d=>5 ada>6
UB: [Chan FOCS'13] o(nt5)  o(m) o(n?* o(n"/?)
LB: [Kinnemann FOCS22] Q(n*®) Q(n*7777) Q(n*9833-)  Q(n/3+1/3+8(1/d))
LB: this paper Q(n1.9047...) Q(n2.2222...) Q(nd/3+2\/8/9—0(\/3))



k-Cliqgue Hypothesis

Input: k-partite graph G = (V, UV, U ... UV, E), |Vi| = nforall .
Output: Does G have a clique of size k?
le,vi € Vi, .., vk € Vi, 5.t {vq, v} € E foralla # b.

Best known algorithm O(n*) for k divisible by 3.

Combinatorial Clique Hypothesis

For any k > 3 there is no O(n*—¢)
combinatorial algorithm for k-Clique.




k- Cligue Hypothesis

Input: k-partite 5-uniform hypergraph G = (Vi U VL U ... U Vi, E), |Vi| = n for
all /.

Output: Does G have a hyperclique of size k?

le,vi € Vi, ..., vk € Vi, S.t. {Va, Vi, v} € E for all distinct a, b, c.

Best known algorithm n“*°(Y) (essentially bruteforce).

Clique Hypothesis

For any k > 3 there is no O(n" °) algorithm for 3-uniform k-hyperclique.

See [Lincoln, V. Williams, Williams'18], [Bringmann, Fischer, Kinnemann'19], [Klinnemann,
Marx20].
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Chan’s Combinatorial Lower Bound

Reduction from triangle detection.

Vi T
want: cube for (a, b, ¢) is covered by a box < 1
(a, b, c) do not form a triangle i |
@ For all non-adjacenta € V4, b € V; add a 1 J 777777 ool
box covering all (a, b, -) unit cubes. 1 "
| By i ZZZZZZZ"b Vs
L



Chan’s Combinatorial Lower Bound

Reduction from triangle detection.
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want: cube for (a, b, ¢) is covered by a box < 1 5
(a, b, c) do not form a triangle i

Va AN

@ Forall non-adjacenta € V4,b € V, add a 1 1]
box covering all (a, b, -) unit cubes. 1 "

@ Forall non-adjacenta € V4, c € Vs add a .
box covering all (a, -, ¢) unit cubes. T




Chan’s Combinatorial Lower Bound

Reduction from triangle detection.
Vi
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want: cube for (a, b, ¢) is covered by a box < T 5
(a, b, c) do not form a triangle

0

@ Forall non-adjacenta € V4,b € V, add a 1 1] ¥
box covering all (a, b, -) unit cubes. 1 "

@ Forall non-adjacenta € V4, c € Vs add a
box covering all (a, -, ¢) unit cubes.

@ Forall non-adjacentb € V,,c € V3 add a
box covering all (-, b, ¢) unit cubes.



Chan’s Combinatorial Lower Bound

Reduction from triangle detection.

Vi
N N
.
.
N
Y, \
N
K]
TN Va

want: cube for (a, b, ¢) is covered by a box <
(a, b, c) do not form a triangle

@ We create N = O(n?) boxes.

o Q(N2—°M) lower bound for
combinatorial algorithms.

|||||||||||||||||||




Lexicographic encoding

Encode a sequence of parts
(Vi,, Vi, ..., V;) in each dimension
lexicographically.

We can specify choices
(-~ Vj,...,-) as W~ ! boxes.

(2, 1)I(2A z)l(z. 3)(3, 1‘)(3, 5)(3. 3)



Lexicographic encoding

Encode a sequence of parts
(Vi,, Vi, ..., V;) in each dimension
lexicographically.

We can specify choices
(555 Vis--.,-) as W~ boxes.

| IS U A= = 2 =

L | |

(2.1)(2,2)(2, 3)3 (3, 2)(3.3)




Redundant Encoding

Redundancy: encode parts
multiple times in different
dimensions.

o vVa 6 Va, Vb 6 Vb, VC 6 VC S.t.

{Va, Vb, v} ¢ E add a box 1 ! | I
covering cubes corresponding ¢ St —
to choosing this triplet into | o
the hyperclique. S -
7 e
@ ————F :/:/ — (Wi Ui )
(vir, 1 Va, )



Redundant Encoding

Redundancy: encode parts

multiple times in different 6
dimensions.
Q Vv, eV,v,eVyv.e Vst 5

{Va, Vb, v} ¢ E add a box

covering cubes corresponding , 4

to choosing this triplet into Va

the hyperclique. 3
@ Cover inconsistent cubes: if 9

for the same part different

vertices are chosen in 1

different dimensions.




Formalizing the setup

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.

51,151,2 51,3

52,1522 523

53,153,2 533

54,1542 543




Formalizing the setup

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.

51,1512 51,3 e a

@ Triplet condition: Every triplet of
elements can be covered by 3 §215225823 .- ¢
prefixes of total length < .

53,1532 533

§41542543 --- p
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Formalizing the setup

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.

51,1512 51,3 e a

@ Triplet condition: Every triplet of
elements can be covered by 3 §2,1522 523
prefixes of total length < «.

@ Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total
length < o + 1.
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Formalizing the setup

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Triplet condition: Every triplet of I d+1
elements can be covered by 3
prefixes of total length < «. (dd+1,3: | 9 d4+1
@ Singleton condition: The first and

last occurrences of any element can
be covered by 2 prefixes of total

length < o + 1. d d+1




Formalizing the setup

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.

I d+1

@ Triplet condition: Every triplet of
elements can be covered by 3
prefixes of total length < «. (dd+1,3: | 9 d4+1

@ Singleton condition: The first and
last occurrences of any element can
be covered by 2 prefixes of total

length <o + 1. d d+1

Theorem 1 (Helpful tool)

(d, k, )-prefix covering design = Q(N"~°1) lower bound for KMP in R*
based on the 3-uniform k-hyperclique hypothesis.




Prefix Covering Designs: Examples

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Every triplet of elements can be covered by 3 prefixes of total length < .

@ The first and last occurrences of any element can be covered by 2
prefixes of total length < o + 1.

Implicit in previous work [Kiinnemann FOCS’22]:



Prefix Covering Designs: Examples

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Every triplet of elements can be covered by 3 prefixes of total length < .

@ The first and last occurrences of any element can be covered by 2
prefixes of total length < o + 1.

Implicit in previous work [Kiinnemann FOCS’22]:
@ There exists a (d, d?, 3d — 3)-prefix covering design giving an
Q(N5+379(D) lower bound.



Prefix Covering Designs: Examples

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Every triplet of elements can be covered by 3 prefixes of total length < .

@ The first and last occurrences of any element can be covered by 2
prefixes of total length < o + 1.

Implicit in previous work [Kiinnemann FOCS’22]:
@ (3,3g,2g + 1)-prefix covering design for any g > 1:
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Prefix Covering Designs: Examples

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Every triplet of elements can be covered by 3 prefixes of total length < .

@ The first and last occurrences of any element can be covered by 2
prefixes of total length < o + 1.

Implicit in previous work [Kiinnemann FOCS’22]:
@ (3,3g,2g + 1)-prefix covering design for any g > 1:

1 2 192929 1]+ g +1
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Prefix Covering Designs: Examples

Definition: (d, k, «)-prefix covering design — d sequences over {1,... k} s.t.
@ Every triplet of elements can be covered by 3 prefixes of total length < .

@ The first and last occurrences of any element can be covered by 2
prefixes of total length < o + 1.

Implicit in previous work [Kiinnemann FOCS’22]:
@ (3,3g,2g + 1)-prefix covering design for any g > 1:

1 2 [--19]29/29—1|---| g+1

g+1| g+2}--29|3g|3g —1|--|2g +1

g+ 12g+2---Bg| 9| g—1|--] 1

"]
o Q(N#1 M) 22% (N3 -9 lower bound for d = 3.
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@ Used the help of a SAT-solver to find good prefix covering designs.



Prefix Covering Designs: New Results for ¢ = 4,5

@ Used the help of a SAT-solver to find good prefix covering designs.

There is a (4,40, 21)-prefix covering design yielding an Q(N*9%47--=o(1)) [ower
bound for R*.

= (1,2,3,4,5,6,7,8,9,10,40, 19,28, 37, 26),

= (11,12,13,14,15,16,17, 18,19, 20, 30,9, 38, 27, 36),

= (21,22,23,24,25,26,27,28,29, 30,20, 39, 8,7, 37),
s+ = (31,32,33,34,35, 36,37, 38, 39, 40, 10, 29, 18, 17, 27).




Prefix Covering Designs: New Results for ¢ = 4,5

@ Used the help of a SAT-solver to find good prefix covering designs.

There is a (4,40, 21)-prefix covering design yielding an Q(N*9%47--=o(1)) [ower
bound for R*.

N

There is a (5, 40, 18)-prefix covering design yielding an Q(N?2222-=°(1) [ower
bound for R>.

V.




Prefix Covering Designs: New Results for ¢ = 4,5

@ Used the help of a SAT-solver to find good prefix covering designs.

There is a (4,40, 21)-prefix covering design yielding an Q(N*9%47--=o(1)) [ower
bound for R*.

y

There is a (5, 40, 18)-prefix covering design yielding an Q(N?2222-=°(1) [ower
bound for R>.

Theorem 4
Prefix covering designs cannot give a tight lower bound already for d = 4.

.




Prefix Covering Designs: New Results for all

@ (v, ¢, 2) Covering Design — collection of c-sized subsets By, . .., B, of the
universe {1,2,...,v} such that every couple of elements of the universe
is fully contained in some B;. (see La Jolla covering repository by D. M.
Gordon: dmgordon.org/cover)


https://www.dmgordon.org/cover/
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@ Examples: finite projective planes, balanced incomplete block designs.
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Prefix Covering Designs: New Results for all

@ (v, ¢, 2) Covering Design — collection of c-sized subsets By, .. ., B, of the
universe {1,2,...,v} such that every couple of elements of the universe
is fully contained in some B;. (see La Jolla covering repository by D. M.
Gordon: dmgordon.org/cover)

@ Examples: finite projective planes, balanced incomplete block designs.

o Theorem 5 PreﬁX Th 1
COVGrlng (Framework) . (Hel‘;)?fﬁr?ool) KMP
' Covering Lower
Design Design Bound

Theorem 5 (Framework)

“Good” covering design with d subsets = ‘good” prefix covering designs.
(+ @ matching-Llike condition)



https://www.dmgordon.org/cover/

Prefix Covering Designs: New Results for all

Theorem 6

Good specific lower bounds for fixed values of d + a general lower bound of
Q(N%-l-%'\/a—o(\/a)).
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Theorem 6

Good specific lower bounds for fixed values of d + a general lower bound of
Q(N%-F%'\/E—O(\/a)).

y

Prefix covering designs cannot give lower bounds higher than N%“@'WJF"(‘/H).J




Prefix Covering Designs: New Results for all

Theorem 6
Good specific lower bounds for fixed values of d + a general lower bound of
Q(N%-F%'\/E—O(\/a)).

y

Prefix covering designs cannot give lower bounds higher than N%“@'WJF"(‘/E).J

+ 1 +0(%)

P i (Vi)

2
9

n
+\/gx/5+od)

[Kinnemann FOCS22] Lower Bound:
Our Lower Bound (Theorem 6):

Limitation (Theorem 7):

Wla Wlaw|a



Prefix Covering Designs: New Results Exponents Table

4.5

3.375

3.6818

d | Upper bound | Previous lower bound || SAT-solver | Covering (v, ¢) of the

[Chan'13] [Kinnemann'22] lower designs lower | covering
bound bound design

3115 1.5 1.5 (3, 2)

412 1.777 1.9047 1.8461 (20, 12)

5125 2.0833 2.2222 2.1929 (45, 25)

6|3 2.4 2.5714 (6, 3)

7135 2.7222 3 (7, 3)

8|4 3.0476 5.3333 (24, 10)

9 (90, 36)




Recap and Open Questions

Our Results:
@ We showed lower bounds of Q(N!-947-) in R*, Q(N?-#222+) in R°, and

Q(N35TO(VDY) in R? for Klee’s Measure Problem and related problems
under the 3-uniform hyperclique hypothesis.

@ These lower bounds are close to the best possible achievable using
prefix covering designs.

Open Questions:
@ Can we solve Klee’s Measure Problem faster for large d?
@ Can we show tight bounds for ¢ = 4,5, 6 using some different method?
@ Can we show lower bounds of form Q(N4=°(9)) for v > 1/3?



