Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee's Measure Problem and Related Problems in Dimensions d > 4

Egor Gorbachev ¹ Marvin Künnemann ²

 1 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus

²RPTU Kaiserslautern-Landau

June 14, 2023

Klee's Measure Problem

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

Klee's Measure Problem

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

- basic geometric primitive
- many related problems, e.g.:
 - depth of axis-parallel boxes
 - largest empty (anchored) box
 - discrepancy of boxes
 - ...

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

Output: volume of the union of these boxes.

[Klee '77]

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

Klee's Measure Problem (KMP)

Input: n axis-parallel boxes in \mathbb{R}^d .

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

$$d=3 \qquad d=4 \qquad \qquad d=5 \qquad \qquad d\geq 6$$
 UB: [Chan FOCS'13]
$$O(n^{1.5}) \quad O(n^2) \qquad O(n^{2.5}) \qquad O(n^{d/2})$$
 LB: [Künnemann FOCS'22]

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

$$\begin{array}{ccccc} d=3 & d=4 & d=5 & d\geq 6 \\ \text{UB: [Chan FOCS'13]} & O(n^{1.5}) & O(n^2) & O(n^{2.5}) & O(n^{d/2}) \\ \text{LB: [Künnemann FOCS'22]} & \Omega(n^{1.5}) & \end{array}$$

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

LB: this paper

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

- [Chan FOCS'13] \rightarrow tight lower bound of $\Omega(n^{\frac{d}{2}-o(1)})$ for **combinatorial** algorithms under the k-clique hypothesis.
- Can we make these lower bounds hold for **general** algorithms?

k-Clique Hypothesis

k-Clique

Input: k-partite graph $G = (V_1 \cup V_2 \cup ... \cup V_k, E)$, $|V_i| = n$ for all i.

Output: Does *G* have a clique of size *k*?

I.e., $v_1 \in V_1, \ldots, v_k \in V_k$, s.t. $\{v_a, v_b\} \in E$ for all $a \neq b$.

Best known algorithm $O(n^{\frac{\omega}{3}k})$ for k divisible by 3.

Combinatorial Clique Hypothesis

For any $k \ge 3$ there is no $O(n^{k-\varepsilon})$ combinatorial algorithm for k-Clique.

k-HyperClique Hypothesis

3-uniform *k*-HyperClique

Input: k-partite 3-uniform hypergraph $G = (V_1 \cup V_2 \cup ... \cup V_k, E)$, $|V_i| = n$ for all i.

Output: Does *G* have a hyperclique of size *k*?

I.e., $v_1 \in V_1, \ldots, v_k \in V_k$, s.t. $\{v_a, v_b, v_c\} \in E$ for all distinct a, b, c.

Best known algorithm $n^{k\pm o(1)}$ (essentially bruteforce).

3-uniform HyperClique Hypothesis

For any k > 3 there is no $O(n^{k-\varepsilon})$ algorithm for 3-uniform k-hyperclique.

See [Lincoln, V. Williams, Williams'18], [Bringmann, Fischer, Künnemann'19], [Künnemann, Marx'20].

Reduction from triangle detection.

Reduction from triangle detection.

Reduction from triangle detection.

want: cube for (a, b, c) is covered by a box \Leftrightarrow (a, b, c) do **not** form a triangle

• For all non-adjacent $a \in V_1$, $b \in V_2$ add a box covering all (a, b, \cdot) unit cubes.

Reduction from triangle detection.

- For all non-adjacent $a \in V_1$, $b \in V_2$ add a box covering all (a, b, \cdot) unit cubes.
- For all non-adjacent $a \in V_1$, $c \in V_3$ add a box covering all (a, \cdot, c) unit cubes.

Reduction from triangle detection.

- For all non-adjacent $a \in V_1$, $b \in V_2$ add a box covering all (a, b, \cdot) unit cubes.
- For all non-adjacent $a \in V_1$, $c \in V_3$ add a box covering all (a, \cdot, c) unit cubes.
- For all non-adjacent $b \in V_2$, $c \in V_3$ add a box covering all (\cdot, b, c) unit cubes.

Reduction from triangle detection.

- We create $N = O(n^2)$ boxes.
- $\Omega(N^{\frac{d}{2}-o(1)})$ lower bound for combinatorial algorithms.

Lexicographic encoding

Encode a sequence of parts $(V_{i_1}, V_{i_2}, \dots, V_{i_t})$ in each dimension lexicographically.

We can specify choices $(\cdot, \cdot, \dots, v_{i_j}, \dots, \cdot)$ as n^{j-1} boxes.

Lexicographic encoding

Encode a sequence of parts $(V_{i_1}, V_{i_2}, \dots, V_{i_t})$ in each dimension lexicographically.

We can specify choices $(\cdot, \cdot, \dots, v_{i_j}, \dots, \cdot)$ as n^{j-1} boxes.

Redundant Encoding

Redundancy: encode parts multiple times in different dimensions.

1 $\forall v_a \in V_a, v_b \in V_b, v_c \in V_c$ s.t. $\{v_a, v_b, v_c\} \notin E$ add a box covering cubes corresponding to choosing this triplet into the hyperclique.

Redundant Encoding

Redundancy: encode parts multiple times in different dimensions.

- $\forall v_a \in V_a, v_b \in V_b, v_c \in V_c$ s.t. $\{v_a, v_b, v_c\} \notin E$ add a box covering cubes corresponding to choosing this triplet into the hyperclique.
- Cover inconsistent cubes: if for the same part different vertices are chosen in different dimensions.

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

$$s_{1,1} s_{1,2} s_{1,3} \cdots$$

$$s_{2,1} s_{2,2} s_{2,3} \cdots$$

$$s_{3,1} s_{3,2} s_{3,3} \dots$$

$$s_{4,1} \, s_{4,2} \, s_{4,3} \, \ldots$$

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

 $s_{1,1}s_{1,2}s_{1,3} \cdots a \cdots$

• Triplet condition: Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.

 $s_{3,1} s_{3,2} s_{3,3} \cdots$

 $s_{4,1}s_{4,2}s_{4,3} \cdots b \cdots$

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

 $s_{1,1}s_{1,2}s_{1,3} \cdots a \cdots$

• Triplet condition: Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.

 $s_{2,1}s_{2,2}s_{2,3}\cdots c\cdots b$...

 $s_{3,1} s_{3,2} s_{3,3} \cdots$

 $s_{4,1} s_{4,2} s_{4,3} \dots$

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

 Triplet condition: Every triplet of elements can be covered by 3

prefixes of total length $< \alpha$.

• Singleton condition: The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

 $s_{1,1}s_{1,2}s_{1,3} \cdots a \cdots$

 $s_{2,1} s_{2,2} s_{2,3} \cdots$

 $s_{3,1} s_{3,2} s_{3,3} a$...

 $\begin{bmatrix} s_{4,1} s_{4,2} s_{4,3} & \cdots & a \end{bmatrix} \cdots$

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- **Triplet condition:** Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- **Singleton condition:** The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- **Triplet condition:** Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- Singleton condition: The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

d d + 1

Theorem 1 (Helpful tool)

 (d, k, α) -prefix covering design $\Rightarrow \Omega(N^{\frac{k}{\alpha}-o(1)})$ lower bound for KMP in \mathbb{R}^d based on the 3-uniform k-hyperclique hypothesis.

Prefix Covering Designs: Examples

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Implicit in previous work [Künnemann FOCS'22]:

Prefix Covering Designs: Examples

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Implicit in previous work [Künnemann FOCS'22]:

• There exists a $(d, d^2, 3d - 3)$ -prefix covering design giving an $\Omega(N^{\frac{d}{3} + \frac{1}{3} + \Theta(\frac{1}{d})})$ lower bound.

Prefix Covering Designs: Examples

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- ullet Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Implicit in previous work [Künnemann FOCS'22]:

• (3, 3g, 2g + 1)-prefix covering design for any $g \ge 1$:

1	2	 g	2g	2g - 1	 g+1
g+1	g+2	 2g	3g	3g - 1	 2g + 1
				g-1	

Prefix Covering Designs: Examples

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- ullet Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Implicit in previous work [Künnemann FOCS'22]:

• (3, 3g, 2g + 1)-prefix covering design for any $g \ge 1$:

1	2	 g	2g	2g - 1	 g+1
g+1	g+2	 2g	3g	3g - 1	 2g + 1
				g-1	

Prefix Covering Designs: Examples

Definition: (d, k, α) -prefix covering design -d sequences over $\{1, \ldots, k\}$ s.t.:

- Every triplet of elements can be covered by 3 prefixes of total length $\leq \alpha$.
- The first and last occurrences of any element can be covered by 2 prefixes of total length $\leq \alpha + 1$.

Implicit in previous work [Künnemann FOCS'22]:

• (3, 3g, 2g + 1)-prefix covering design for any $g \ge 1$:

• $\Omega(N^{\frac{3g}{2g+1}-o(1)}) \xrightarrow{g \to \infty} \Omega(N^{\frac{3}{2}-o(1)})$ lower bound for d=3.

• Used the help of a SAT-solver to find good prefix covering designs.

• Used the help of a SAT-solver to find good prefix covering designs.

Theorem 2

There is a (4, 40, 21)-prefix covering design yielding an $\Omega(N^{1.9047...-o(1)})$ lower bound for \mathbb{R}^4 .

```
s_1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40, 19, 28, 37, 26),

s_2 = (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 9, 38, 27, 36),

s_3 = (21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 39, 8, 7, 37),

s_4 = (31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 10, 29, 18, 17, 27).
```

• Used the help of a SAT-solver to find good prefix covering designs.

Theorem 2

There is a (4, 40, 21)-prefix covering design yielding an $\Omega(N^{1.9047...-o(1)})$ lower bound for \mathbb{R}^4 .

Theorem 3

There is a (5, 40, 18)-prefix covering design yielding an $\Omega(N^{2.2222...-o(1)})$ lower bound for \mathbb{R}^5 .

• Used the help of a SAT-solver to find good prefix covering designs.

Theorem 2

There is a (4, 40, 21)-prefix covering design yielding an $\Omega(N^{1.9047...-o(1)})$ lower bound for \mathbb{R}^4 .

Theorem 3

There is a (5, 40, 18)-prefix covering design yielding an $\Omega(N^{2.2222...-o(1)})$ lower bound for \mathbb{R}^5 .

Theorem 4

Prefix covering designs cannot give a tight lower bound already for d = 4.

• (v, c, 2) Covering Design — collection of c-sized subsets B_1, \ldots, B_d of the universe $\{1, 2, \ldots, v\}$ such that every couple of elements of the universe is fully contained in some B_i . (see La Jolla covering repository by D. M. Gordon: dmgordon.org/cover)

- (v, c, 2) Covering Design collection of c-sized subsets B_1, \ldots, B_d of the universe $\{1, 2, \ldots, v\}$ such that every couple of elements of the universe is fully contained in some B_i . (see La Jolla covering repository by D. M. Gordon: dmgordon.org/cover)
- Examples: finite projective planes, balanced incomplete block designs.

- (v, c, 2) Covering Design collection of c-sized subsets B_1, \ldots, B_d of the universe $\{1, 2, \ldots, v\}$ such that every couple of elements of the universe is fully contained in some B_i . (see La Jolla covering repository by D. M. Gordon: dmgordon.org/cover)
- **Examples:** finite projective planes, balanced incomplete block designs.

Theorem 5 (Framework)

"Good" covering design with *d* subsets ⇒ "good" prefix covering designs. (+ a matching-like condition)

Theorem 6

Good specific lower bounds for fixed values of d + a general lower bound of $\Omega(N^{\frac{d}{3}+\frac{2}{9}\cdot\sqrt{d}-o(\sqrt{d})})$.

Theorem 6

Good specific lower bounds for fixed values of d + a general lower bound of $\Omega(N^{\frac{d}{3}+\frac{2}{9}\cdot\sqrt{d}-o(\sqrt{d})})$.

Theorem 7

Prefix covering designs cannot give lower bounds higher than $N^{\frac{d}{3} + \sqrt{\frac{2}{9}} \cdot \sqrt{d} + o(\sqrt{d})}$.

Theorem 6

Good specific lower bounds for fixed values of d + a general lower bound of $\Omega(N^{\frac{d}{3}+\frac{2}{9}\cdot\sqrt{d}-o(\sqrt{d})})$.

Theorem 7

Prefix covering designs cannot give lower bounds higher than $N^{\frac{d}{3}+\sqrt{\frac{2}{9}}\cdot\sqrt{d}+o(\sqrt{d})}$.

[Künnemann FOCS'22] Lower Bound: $\frac{d}{3} + \frac{1}{3} + \Theta(\frac{1}{d})$ Our Lower Bound (Theorem 6): $\frac{d}{3} + \frac{2}{9} \cdot \sqrt{d} - o(\sqrt{d})$ Limitation (Theorem 7): $\frac{d}{3} + \sqrt{\frac{2}{9}} \cdot \sqrt{d} + o(\sqrt{d})$

Prefix Covering Designs: New Results Exponents Table

d	Upper b	ound	Previous lower bound	SAT-solver	Covering	(v , <i>c</i>) of the
	[Chan'13]		[Künnemann'22]	lower	designs lower	covering
				bound	bound	design
3	1.5		1.5		1.5	(3, 2)
4	2		1.777	1.9047	1.8461	(20, 12)
5	2.5		2.0833	2.2222	2.1929	(45, 25)
6	3		2.4		2.5714	(6, 3)
7	3.5		2.7222		3	(7, 3)
8	4		3.0476		3.3333	(24, 10)
9	4.5		3.375		3.6818	(90, 36)
:	:		;		:	:
	•				•	•

Recap and Open Questions

Our Results:

- We showed lower bounds of $\Omega(N^{1.9047...})$ in \mathbb{R}^4 , $\Omega(N^{2.2222...})$ in \mathbb{R}^5 , and $\Omega(N^{\frac{d}{3}+\Theta(\sqrt{d})})$ in \mathbb{R}^d for Klee's Measure Problem and related problems under the 3-uniform hyperclique hypothesis.
- These lower bounds are close to the best possible achievable using prefix covering designs.

Open Questions:

- Can we solve Klee's Measure Problem faster for large *d*?
- Can we show tight bounds for d = 4, 5, 6 using some different method?
- Can we show lower bounds of form $\Omega(N^{\gamma \cdot d o(d)})$ for $\gamma > 1/3$?