Core-Sparse Monge Matrix Multiplication

Improved Algorithm and Applications

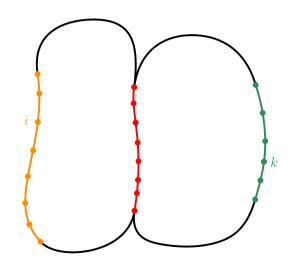
Paweł Gawrychowski, **Egor Gorbachev**, and Tomasz Kociumaka

University of Wrocław, Saarland University, and Max Planck Institute for Informatics

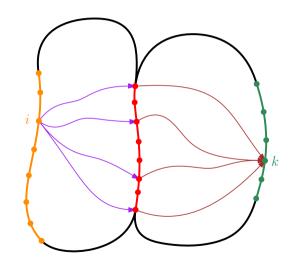
ESA 2025 September 17th, 2025, Warsaw

- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.

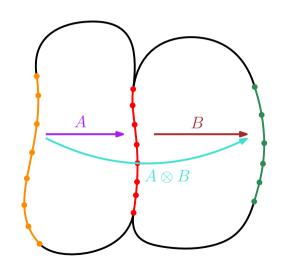
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.



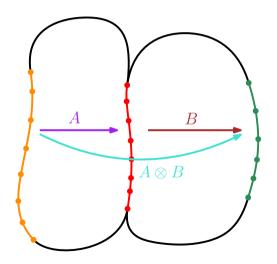
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.



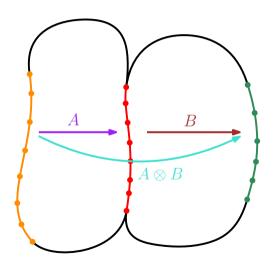
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.



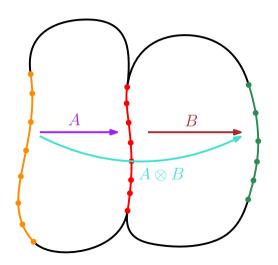
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.



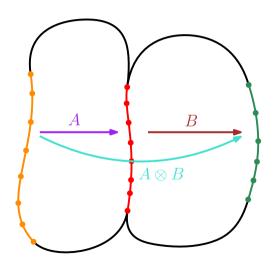
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.
- Faster algorithms exist for many special cases:



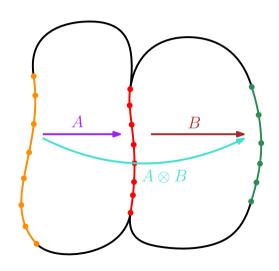
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.
- Faster algorithms exist for many special cases:
 - Bounded-difference integer-valued matrices;



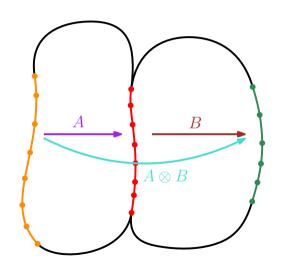
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.
- Faster algorithms exist for many special cases:
 - Bounded-difference integer-valued matrices;
 - Row-bounded-difference integer-valued matrices;

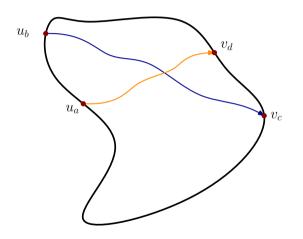


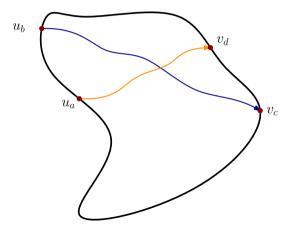
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.
- Faster algorithms exist for many special cases:
 - Bounded-difference integer-valued matrices;
 - Row-bounded-difference integer-valued matrices;
 - Row-monotone integer-valued matrices with values in $\mathcal{O}(n)$;

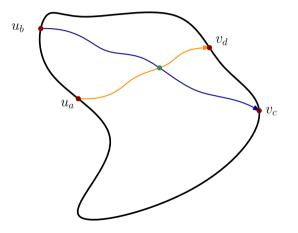


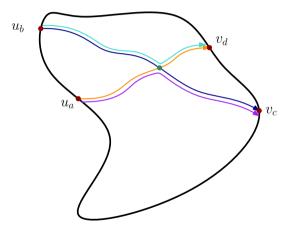
- Denoted by $C = A \otimes B$.
- Defined as $C_{i,k} = \min_j A_{i,j} + B_{j,k}$.
- Finding the min-plus product of two $n \times n$ matrices is $\Omega(n^{3-o(1)})$ -hard assuming the APSP hypothesis.
- Faster algorithms exist for many special cases:
 - Bounded-difference integer-valued matrices;
 - Row-bounded-difference integer-valued matrices;
 - Row-monotone integer-valued matrices with values in $\mathcal{O}(n)$;
 - Monge matrices.

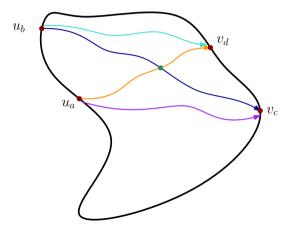




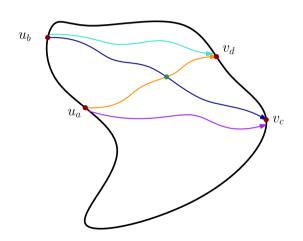






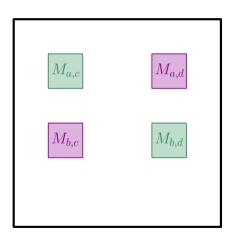


- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.

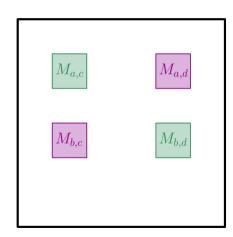


- Assume that the graph is planar.
- Monge property:

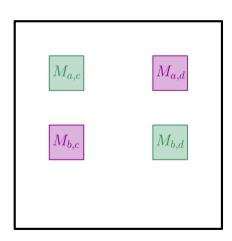
$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$



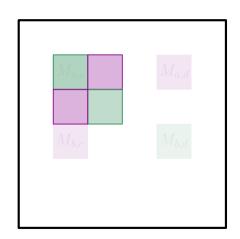
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.



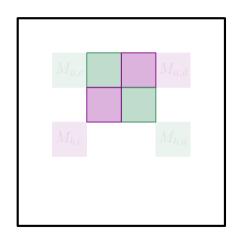
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



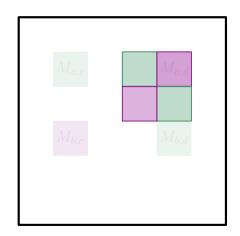
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



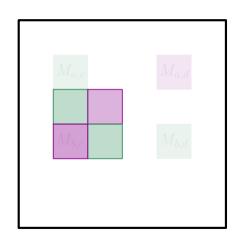
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



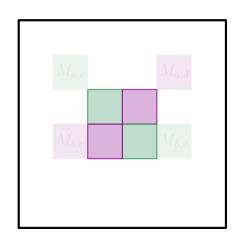
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



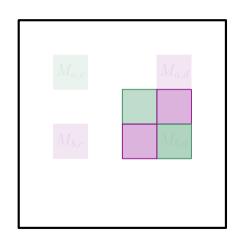
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



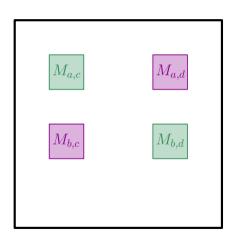
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \leq M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



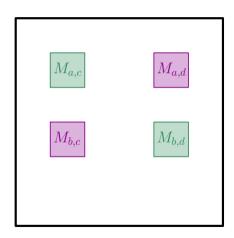
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.



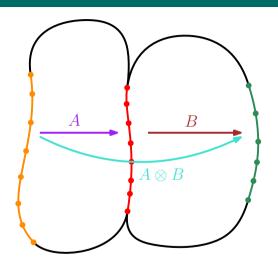
- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.

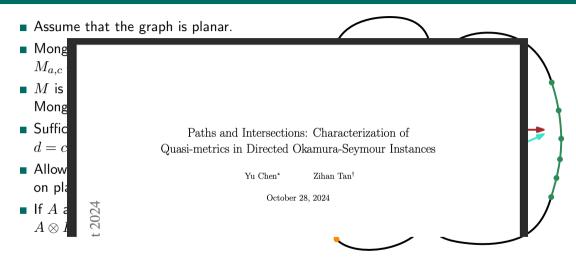


- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- Sufficient to check only for b = a + 1 and d = c + 1.
- Allowed for $\widetilde{\mathcal{O}}(n)$ -time algorithm for SSSP on planar graphs [FR06].

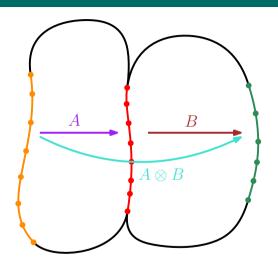


- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- lacksquare Sufficient to check only for b=a+1 and d=c+1.
- Allowed for $\widetilde{\mathcal{O}}(n)$ -time algorithm for SSSP on planar graphs [FR06].
- If A and B are Monge matrices, then $A \otimes B$ is also a Monge matrix.

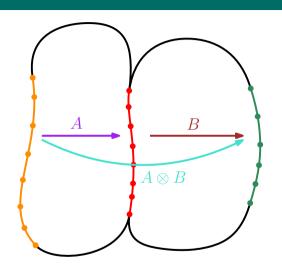




- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- M is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- lacksquare Sufficient to check only for b=a+1 and d=c+1.
- Allowed for $\widetilde{\mathcal{O}}(n)$ -time algorithm for SSSP on planar graphs [FR06].
- If A and B are Monge matrices, then $A \otimes B$ is also a Monge matrix.



- Assume that the graph is planar.
- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- $lackbox{ } M$ is a Monge matrix if it satisfies the Monge property for all a < b and c < d.
- lacksquare Sufficient to check only for b=a+1 and d=c+1.
- Allowed for $\widetilde{\mathcal{O}}(n)$ -time algorithm for SSSP on planar graphs [FR06].
- If A and B are Monge matrices, then $A \otimes B$ is also a Monge matrix.
- SMAWK algorithm finds the min-plus product of two $n \times n$ Monge matrices in $\mathcal{O}(n^2)$ time.



■ Monge property:

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

Monge property:

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

If all inequalities are equalities, we only need to store the first row and the first column.

2	8	4	9	7	7	10
7	13	9	14	12	12	15
6	12	8	13	11	11	14
8	14	10	15	13	13	16
5	11	7	12	10	10	13
10	16	12	17	15	15	18
12	18	14	19	17	17	20

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- If all inequalities are equalities, we only need to store the first row and the first column.

2	8	4	9	7	7	10
7	13	9	14	12	12	15
6	12	8	13	11	11	14
8	14	10	15	13	13	16
5	11	7	12	10	10	13
10	16	12	17	15	15	18
12	18	14	19	17	17	20

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- If all inequalities are equalities, we only need to store the first row and the first column.

2	8	4	9	7	7	10
7	13	9	14	12	12	15
6	12	8	13	11	11	14
8	14	10	15	13	13	16
5	11	7	12	10	10	13
10	16	12	17	15	15	18
12	18	14	19	17	17	20

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- If all inequalities are equalities, we only need to store the first row and the first column.

2	8	4	9	7	7	10
7	13	9	14	12	12	15
6	12	8	13	11	11	14
8	14	10	15	13	13	16
5	11	7	12	10	10	13
10	16	12	17	15	15	18
12	18	14	19	17	17	20

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$

2	8	4	9	7	7	10
7	13	9	14	12	12	15
6	12	8	13	11	11	14
8	14	10	15	13	13	16
5	11	7	12	10	10	13
10	16	12	17	15	15	18
12	18	14	19	17	17	20

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$

2		4	9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$
- 12 = 10 + 9 2 1 1 3.

2	8		9	7	7	10
7		8	10	8	8	11
6	11	7	9	7	7	10
8	13		11	9	9	12
5	10	5	7	5		8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$
- 12 = 10 + 9 2 1 1 3.

2				7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8		9	11	9	9	12
5			7	5	5	8
10	15	10		10	8	11
12	17	12		8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$
- 12 = 10 + 9 2 1 1 3.

2	8	4		7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$
- 12 = 10 + 9 2 1 1 3.
- 9 = 12 + 10 2 1 1 3 4 2.

2			9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- 17 = 10 + 9 2.
- 12 = 10 + 9 2 1 1 3.
- 9 = 12 + 10 2 1 1 3 4 2
- First row, first column, and core elements determine the whole matrix.

2	8	4	9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7		5	8
10	15	10	12		8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- If all inequalities are equalities, we only need to store the first row and the first column.
- $\blacksquare 17 = 10 + 9 2.$
- 12 = 10 + 9 2 1 1 3.
- 9 = 12 + 10 2 1 1 3 4 2
- First row, first column, and core elements determine the whole matrix.
- Using an orthogonal range sum data structure, we can efficiently query any element of the matrix.

2	8	4	9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- First row, first column, and core elements determine the whole matrix.

2		4	9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

- Monge property: $M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}$.
- First row, first column, and core elements determine the whole matrix.
- Let $\delta(M)$ be the number of elements in the core of M. We use $\widetilde{\mathcal{O}}(n+\delta(M))$ space to encode M.

2			9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

■ Monge property: $M_{a.c} + M_{b.d} \le M_{a.d} + M_{b.c}$.

- First row, first column, and core elements determine the whole matrix.
- Let $\delta(M)$ be the number of elements in the core of M. We use $\widetilde{\mathcal{O}}(n+\delta(M))$ space to encode M.
- $M_{0,n-1} + M_{n-1,0} M_{0,0} M_{n-1,n-1}$ is the sum of all core values of M.

2	8	4		7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

- First row, first column, and core elements determine the whole matrix.
- Let $\delta(M)$ be the number of elements in the core of M. We use $\widetilde{\mathcal{O}}(n+\delta(M))$ space to encode M.
- $M_{0,n-1} + M_{n-1,0} M_{0,0} M_{n-1,n-1}$ is the sum of all core values of M.
- If M is integer-valued, then $\delta(M) \le M_{0,n-1} + M_{n-1,0} M_{0,0} M_{n-1,n-1}$.

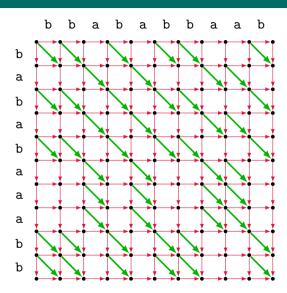
2	8			7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9

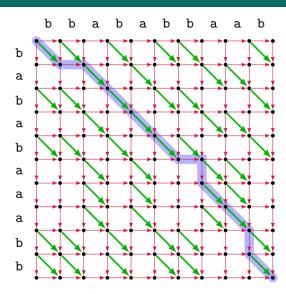
■ Monge property: $M \perp M$, A = M

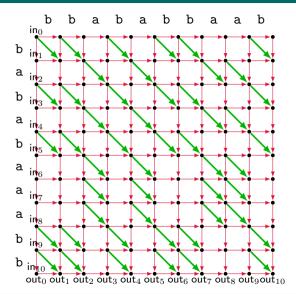
$$M_{a,c} + M_{b,d} \le M_{a,d} + M_{b,c}.$$

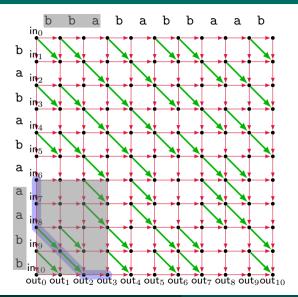
- First row, first column, and core elements determine the whole matrix.
- Let $\delta(M)$ be the number of elements in the core of M. We use $\widetilde{\mathcal{O}}(n+\delta(M))$ space to encode M.
- $M_{0,n-1} + M_{n-1,0} M_{0,0} M_{n-1,n-1}$ is the sum of all core values of M.
- If M is integer-valued, then $\delta(M) \le M_{0,n-1} + M_{n-1,0} M_{0,0} M_{n-1,n-1}$.
- If M is integer-valued and its elements are in $\mathcal{O}(n)$, we have $\delta(M) = \mathcal{O}(n)$.

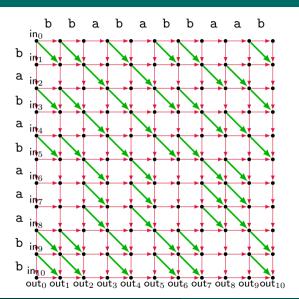
2	8		9	7	7	10
7	12	8	10	8	8	11
6	11	7	9	7	7	10
8	13	9	11	9	9	12
5	10	5	7	5	5	8
10	15	10	12	10	8	11
12	17	12	14	8	6	9











0	1	2	3	4	5	6	7	7	7	8
0	1	2	3	4	4	5	6	6	6	7
0	1	2	3	4	4	5	6	6	6	7
0	1	2	2	3	3	4	5	5	5	6
0	1	2	2	3	3	4	5	5		5
0	1	2	2	2	2	3	4	4	4	4
0	1	2	2	2	2	3		4	4	4
0	1	2	2	2	2	3		3	3	3
0	1	2	2	2			2	2	2	2
0	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0

Min-Plus Multiplication of Simple Subunit-Monge Matrices

	Sim	ıpıe	Sui	oun	IT-IV	iong	ge iv	latr	IX	
0	1	2	3	4	5	6	7	7	7	8
0	1	2	3	4	4	5	6	6	6	7
0	1	2	3	4	4	5	6	6	6	7
0	1	2	2	3	3	4	5	5	5	6
0	1	2	2	3	3	4	5	5	5	5
0	1	2	2	2	2	3	4	4	4	4
0	1	2	2	2	2	3	4	4	4	4
0	1	2	2	2	2	3	3	3	3	3
0	1	2	2	2	2	2	2	2	2	2
0	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0

Cimple Cubunit Mange Matrix

Min-Plus Multiplication of Simple Subunit-Monge Matrices

Fact [Tiskin08]

Given the cores of two simple subunit-Monge matrices A and B, their min-plus product $A\otimes B$ is also simple subunit-Monge, and its core can be computed in $\mathcal{O}(n\log n)$ time.

Simple Subunit-Monge Matrix 5 5 3 5

Min-Plus Multiplication of Core-Sparse Monge Matrices

Fact [Tiskin08]

Given the cores of two simple subunit-Monge matrices A and B, their min-plus product $A\otimes B$ is also simple subunit-Monge, and its core can be computed in $\mathcal{O}(n\log n)$ time.

Core-Sparse Monge Matrix

2	8	4		7	7	10	11	12	17	23
7	12	8		8	8	11	12	13	18	24
6	11	7	9	7	7	10	11	12	17	22
8	13	9	11	9	9	12	13		19	24
5	10	5	7	5		8			14	19
10	15	10	12	10		11	12	12	17	22
12	17	12	14^4	8		9			15	20
10	15			6		5	6		10	15
15	20	15	16	10	6	9	10	9		19
13		13	14	8	4	7	8	7	9	14
18	20	15	16	10	6	9	10	9	11	16

Min-Plus Multiplication of Core-Sparse Monge Matrices

Fact [Tiskin08]

Given the cores of two simple subunit-Monge matrices A and B, their min-plus product $A\otimes B$ is also simple subunit-Monge, and its core can be computed in $\mathcal{O}(n\log n)$ time.

Fact [Russo10]

Given the condensed representations of two Monge matrices A and B, the condensed representation of their min-plus product $A \otimes B$ can be computed in $\mathcal{O}((n + \delta(A) + \delta(B) + \delta(A \otimes B)) \log^3 n)$ time.

Core-Sparse Monge Matrix

2	8	4		7	7	10	11	12	17	23
7	12	8	10	8	8	11	12	13	18	24
6	11	7	9	7	7	10	11	12		22
8	13	9	11	9	9	12	13		19	24
5	10		7	5		8			14	19
10	15	10	12	10		11	12	12	17	22
12	17	12	14	8 2		9	10		15	20
10	15	10		6		5			10	15
15	20		16	10	6	9	10	9		19
13	18	13	14	8	4	7	8	7	9	14
18	20	15	16	10	6	9	10	9	11	16

■ Prior Work:

- [Tiskin08] $\mathcal{O}(n \log n)$ -time algorithm for min-plus multiplication of simple subunit-Monge matrices.
- [Russo10] $\mathcal{O}((n+\delta(A)+\delta(B)+\delta(A\otimes B))\log^3 n)$ -time algorithm for min-plus multiplication of arbitrary Monge matrices.

- Prior Work:
 - [Tiskin08] $\mathcal{O}(n \log n)$ -time algorithm for min-plus multiplication of simple subunit-Monge matrices.
 - [Russo10] $\mathcal{O}((n+\delta(A)+\delta(B)+\delta(A\otimes B))\log^3 n)$ -time algorithm for min-plus multiplication of arbitrary Monge matrices.
- Our Results:

- Prior Work:
 - [Tiskin08] $\mathcal{O}(n \log n)$ -time algorithm for min-plus multiplication of simple subunit-Monge matrices.
 - [Russo10] $\mathcal{O}((n+\delta(A)+\delta(B)+\delta(A\otimes B))\log^3 n)$ -time algorithm for min-plus multiplication of arbitrary Monge matrices.
- Our Results:

Theorem 1 [this work]

If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.

- Prior Work:
 - [Tiskin08] $\mathcal{O}(n \log n)$ -time algorithm for min-plus multiplication of simple subunit-Monge matrices.
 - [Russo10] $\mathcal{O}((n+\delta(A)+\delta(B)+\delta(A\otimes B))\log^3 n)$ -time algorithm for min-plus multiplication of arbitrary Monge matrices.
- Our Results:

Theorem 1 [this work]

If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.

Theorem 2 [this work]

Given the condensed representations of two Monge matrices A and B, the condensed representation of their min-plus product $A\otimes B$ can be computed in $\mathcal{O}(n+(\delta(A)+\delta(B))\log n)$ time.

■ [GK25]: Integer-weight edit distance.

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].
- Range LIS queries:

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].
- Range LIS queries:

Reference	Preprocessing	Length Queries	
[Tiskin08]	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(\log n)$	

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].
- Range LIS queries:

Reference	Preprocessing	Length Queries	Reporting Queries
[Tiskin08]	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(\log n)$	

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].
- Range LIS queries:

Reference	Preprocessing	Length Queries	Reporting Queries
[Tiskin08]	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(\log n)$	
[KS24]	$\mathcal{O}(n^{3/2}\log^3 n)$		$\mathcal{O}(n^{1/2}\log^3 n + ANS)$

- [GK25]: Integer-weight edit distance.
 - → Using our algorithm saves two log factors compared to the application of [Russo10].
- Range LIS queries:

Reference	Preprocessing	Length Queries	Reporting Queries
[Tiskin08]	$\mathcal{O}(n\log^2 n)$	$\mathcal{O}(\log n)$	
[KS24]	$\mathcal{O}(n^{3/2}\log^3 n)$		$\mathcal{O}(n^{1/2}\log^3 n + ANS)$
[this work]	$\mathcal{O}(n\log^2 n)$		$\mathcal{O}(ANS \log n)$
[this work]	$\mathcal{O}(n\log^3 n)$		$\mathcal{O}(ANS)$

Results:

- Results:
 - If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B))\log n)$ time.

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
- Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.

- Results:
 - If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
 - Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
 - Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.
- Open Problems:

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
- Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.

Open Problems:

■ If we can prove $\delta(A \otimes B) \leq c \cdot (\delta(A) + \delta(B)) + \widetilde{\mathcal{O}}(n)$ for some $c \in [1,2)$, we automatically get a solution for *weighted* range LIS with $\widetilde{\mathcal{O}}(n^{1+\log_2 c})$ preprocessing time, $\widetilde{\mathcal{O}}(1)$ query time, and $\widetilde{\mathcal{O}}(|ANS|)$ reporting time.

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
- Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.

Open Problems:

- If we can prove $\delta(A \otimes B) \leq c \cdot (\delta(A) + \delta(B)) + \widetilde{\mathcal{O}}(n)$ for some $c \in [1,2)$, we automatically get a solution for *weighted* range LIS with $\widetilde{\mathcal{O}}(n^{1+\log_2 c})$ preprocessing time, $\widetilde{\mathcal{O}}(1)$ query time, and $\widetilde{\mathcal{O}}(|ANS|)$ reporting time.
- Improve range LIS reporting preprocessing time to $\mathcal{O}(n\log^2 n)$.

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
- Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.

Open Problems:

- If we can prove $\delta(A \otimes B) \leq c \cdot (\delta(A) + \delta(B)) + \widetilde{\mathcal{O}}(n)$ for some $c \in [1,2)$, we automatically get a solution for *weighted* range LIS with $\widetilde{\mathcal{O}}(n^{1+\log_2 c})$ preprocessing time, $\widetilde{\mathcal{O}}(1)$ query time, and $\widetilde{\mathcal{O}}(|ANS|)$ reporting time.
- Improve range LIS reporting preprocessing time to $\mathcal{O}(n\log^2 n)$.
- Find more applications of core-sparse Monge matrix multiplication.

Results:

- If A and B are Monge matrices then $\delta(A \otimes B) \leq 2 \cdot (\delta(A) + \delta(B))$.
- Min-plus product of Monge matrices A and B can be computed in $\mathcal{O}(n + (\delta(A) + \delta(B)) \log n)$ time.
- Range LIS reporting queries can be answered in $\mathcal{O}(|ANS|)$ time after $\mathcal{O}(n\log^3 n)$ -time preprocessing.

Open Problems:

- If we can prove $\delta(A \otimes B) \leq c \cdot (\delta(A) + \delta(B)) + \widetilde{\mathcal{O}}(n)$ for some $c \in [1,2)$, we automatically get a solution for *weighted* range LIS with $\widetilde{\mathcal{O}}(n^{1+\log_2 c})$ preprocessing time, $\widetilde{\mathcal{O}}(1)$ query time, and $\widetilde{\mathcal{O}}(|ANS|)$ reporting time.
- Improve range LIS reporting preprocessing time to $\mathcal{O}(n\log^2 n)$.
- Find more applications of core-sparse Monge matrix multiplication.

Thank you!